A topological colorful Helly theorem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Colorful Helly Theorem and Colorful Resolutions of Ideals

We demonstrate that the topological Helly theorem and the algebraic Auslander-Buchsbaum may be viewed as different versions of the same phenomenon. Using this correspondence we show how the colorful Helly theorem of I.Barany and its generalizations by G.Kalai and R.Meshulam translates to the algebraic side. Our main results are algebraic generalizations of these translations, which in particula...

متن کامل

A New Topological Helly Theorem and Some Transversal Results

We prove that for a topological spaceX with the property that H∗(U) = 0 for ∗ ≥ d and every open subset U of X, a finite family of open sets in X has nonempty intersection if for any subfamily of size j, 1 ≤ j ≤ d+1, the (d−j)-dimensional homology group of its intersection is zero. We use this theorem to prove new results concerning transversal affi ne planes to families of convex sets

متن کامل

Leray Numbers of Projections and a Topological Helly Type Theorem

Let X be a simplicial complex on the vertex set V . The rational Leray number L(X) of X is the minimal d such that H̃i(Y ;Q) = 0 for all induced subcomplexes Y ⊂ X and i ≥ d. Suppose V = ⋃m i=1 Vi is a partition of V such that the induced subcomplexes X[Vi] are all 0-dimensional. Let π denote the projection of X into the (m − 1)-simplex on the vertex set {1, . . . ,m} given by π(v) = i if v ∈ Vi...

متن کامل

On a Theorem of E. Helly

E. Helly’s theorem asserts that any bounded sequence of monotone real functions contains a pointwise convergent subsequence. We reprove this theorem in a generalized version in terms of monotone functions on linearly ordered sets. We show that the cardinal number responsible for this generalization is exactly the splitting number. We also show that a positive answer to a problem of S. Saks is o...

متن کامل

A helly type theorem for hypersurfaces

Let r be a commutative field (finite or infinite) and let P = P(n, r) be the n-dimensional projective space over ZY Then every point x E P can be expressed by n + 1 homogene coordinates x = (x,,..., x,), not all zero and (x0,..., x,) = @x0,..., Ax,) for OflET. By a hypersurface of degree d we simply mean the set of all points x E P with p(x) = 0, where p(x) is a homogenous polynomial of degree ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2005

ISSN: 0001-8708

DOI: 10.1016/j.aim.2004.03.009